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CHAPTER

6

The women’s heptathlon in the Olympics consists of seven track and field
events: the 200-m and 800-m runs, 100-m high hurdles, shot put, javelin,
high jump, and long jump. To determine who should get the gold medal,
somehow the performances in all seven events have to be combined into

one score. How can performances in such different events be compared? They
don’t even have the same units; the races are recorded in minutes and seconds
and the throwing and jumping events in meters. In the 2004 Olympics, Austra
Skujyté of Lithuania put the shot 16.4 meters, about 3 meters farther than the
average of all contestants. Carolina Klüft won the long jump with a 6.78-m jump,
about a meter better than the average. Which performance deserves more points?
Even though both events are measured in meters, it’s not clear how to compare
them. The solution to the problem of how to compare scores turns out to be a
useful method for comparing all sorts of values whether they have the same
units or not.

The Standard Deviation as a Ruler
The trick in comparing very different-looking values is to
use standard deviations. The standard deviation tells us
how the whole collection of values varies, so it’s a natural
ruler for comparing an individual value to the group.
Over and over during this course, we will ask questions
such as “How far is this value from the mean?” or “How
different are these two statistics?” The answer in every
case will be to measure the distance or difference in stan-
dard deviations.

The concept of the standard deviation as a ruler is not
special to this course. You’ll find statistical distances measured in standard devia-
tions throughout Statistics, up to the most advanced levels.1 This approach is one
of the basic tools of statistical thinking. 

1 Other measures of spread could be used as well, but the standard deviation is the most
common measure, and it is almost always used as the ruler.

Grading on a Curve
If you score 79% on an exam, what grade should
you get? One teaching philosophy looks only 
at the raw percentage, 79, and bases the grade 
on that alone. Another looks at your relative
performance and bases the grade on how you 
did compared with the rest of the class.Teachers
and students still debate which method is better.

The Standard
Deviation as a 
Ruler and the 
Normal Model
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Standardizing with z-Scores 105

NOTATION ALERT:

There goes another letter.
We always use the letter z to
denote values that have been
standardized with the mean
and standard deviation.

The two winning performances on the top of each stem-and-leaf display ap-
pear to be about the same distance from the center of the pack. But look again
carefully. What do we mean by the same distance? The two displays have different
scales. Each line in the stem-and-leaf for the shot put represents half a meter, but
for the long jump each line is only a tenth of a meter. It’s only because our eyes
naturally adjust the scales and use the standard deviation as the ruler that we see

each as being about the same distance from the center of the data.
How can we make this hunch more precise? Let’s see how many stan-
dard deviations each performance is from the mean.

Klüft’s 6.78-m long jump is 0.62 meters longer than the mean jump
of 6.16 m. How many standard deviations better than the mean is that?
The standard deviation for this event was 0.23 m, so her jump was

standard deviations better than the
mean. Skujyté’s winning shot put was meters longer
than the mean shot put distance, and that’s standard
deviations better than the mean. That’s a great performance but not quite
as impressive as Klüft’s long jump, which was farther above the mean, as
measured in standard deviations.

Standardizing with z-Scores
To compare these athletes’ performances, we determined how many standard 
deviations from the event’s mean each was.

Expressing the distance in standard deviations standardizes the perform-
ances. To standardize a value, we simply subtract the mean performance in that
event and then divide this difference by the standard deviation. We can write the
calculation as

These values are called standardized values, and are commonly denoted with the
letter z. Usually, we just call them z-scores.

Standardized values have no units. z-scores measure the distance of each data
value from the mean in standard deviations. A z-score of 2 tells us that a data
value is 2 standard deviations above the mean. It doesn’t matter whether the orig-
inal variable was measured in inches, dollars, or seconds. Data values below the
mean have negative z-scores, so a z-score of means that the data value was
1.6 standard deviations below the mean. Of course, regardless of the direction, the
farther a data value is from the mean, the more unusual it is, so a z-score of -1.3

-1.6

z =

y - y

s
.

3.11>1.24 = 2.51
16.40 - 13.29 = 3.11

(6.78 - 6.16)>0.23 = 0.62>0.23 = 2.70
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FIGURE 6.1
Stem-and-leaf displays for both the long jump
and the shot put in the 2004 Olympic Hep-
tathlon. Carolina Klüft (green scores) won the
long jump, and Austra Skujyté (red scores) won
the shot put. Which heptathlete did better for
both events combined?

Event

Long Jump Shot Put

Mean
(all contestants)

6.16 m 13.29 m

SD 0.23 m 1.24 m
n 26 28

Klüft 6.78 m 14.77 m
Skujyté 6.30 m 16.40 m

In order to compare the two events, let’s start with a picture. This time we’ll
use stem-and-leaf displays so we can see the individual distances. 
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Standardizing skiing timesFOR EXAMPLE

The men’s combined skiing event in the winter Olympics consists of two races: a downhill and a slalom. Times for the two events are added together,
and the skier with the lowest total time wins. In the 2006 Winter Olympics, the mean slalom time was 94.2714 seconds with a standard deviation of
5.2844 seconds. The mean downhill time was 101.807 seconds with a standard deviation of 1.8356 seconds. Ted Ligety of the United States, who won
the gold medal with a combined time of 189.35 seconds, skied the slalom in 87.93 seconds and the downhill in 101.42 seconds.

Question: On which race did he do better compared with the competition?

For the slalom, Ligety’s z-score is found by subtracting 
the mean time from his time and then dividing by the 
standard deviation:

Similarly, his z-score for the downhill is:

The z-scores show that Ligety’s time in the slalom is farther below the mean than his time in the downhill. His
performance in the slalom was more remarkable.

zDownhill  =  
101.42 -  101.807

1.8356
 =  -0.21

zSlalom =  
87.93 -  94.2714

5.2844
 =  - 1.2

By using the standard deviation as a ruler to measure statistical distance
from the mean, we can compare values that are measured on different vari-
ables, with different scales, with different units, or for different individuals. To
determine the winner of the heptathlon, the judges must combine perform-
ances on seven very different events. Because they want the score to be ab-
solute, and not dependent on the particular athletes in each Olympics, they use
predetermined tables, but they could combine scores by standardizing each,
and then adding the z-scores together to reach a total score. The only trick is
that they’d have to switch the sign of the z-score for running events, because
unlike throwing and jumping, it’s better to have a running time below the
mean (with a negative z-score).

To combine the scores Skujyté and Klüft earned in the long jump and the shot
put, we standardize both events as shown in the table. That gives Klüft her 2.70 
z-score in the long jump and a 1.19 in the shot put, for a total of 3.89. Skujyté’s

shot put gave her a 2.51, but her long
jump was only 0.61 SDs above the mean,
so her total is 3.12.

Is this the result we wanted? Yes.
Each won one event, but Klüft’s shot
put was second best, while Skujyté’s
long jump was seventh. The z-scores
measure how far each result is from the
event mean in standard deviation units.
And because they are both in standard
deviation units, we can combine them.
Not coincidentally, Klüft went on to win
the gold medal for the entire seven-
event heptathlon, while Skujyté got the
silver. 

Event
Long Jump Shot Put

Mean
SD

6.16 m 
0.23 m

13.29 m 
1.24 m

Klüft Performance 6.78 m 14.77 m

z-score 6.78 - 6.16
0.23

= 2.70
14.77 - 13.29

1.24
= 1.19

Total z-score 2.70 + 1.19 = 3.89

Skujyté Performance 6.30 m 16.40 m

z-score 6.30 - 6.16
0.23

= 0.61 16.40 - 13.29
1.24

= 2.51

Total z-score 0.61 + 2.51 = 3.12

is more extraordinary than a z-score of 1.2. Looking at the z-scores, we can see that
even though both were winning scores, Klüft’s long jump with a z-score of 2.70 is
slightly more impressive than Skujyté’s shot put with a z-score of 2.51.
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Combining z-scoresFOR EXAMPLE

In the 2006 winter Olympics men’s combined event, lvica Kostelić of Croatia skied the slalom in 89.44 seconds and the downhill in 100.44 seconds. He
thus beat Ted Ligety in the downhill, but not in the slalom. Maybe he should have won the gold medal. 

Question: Considered in terms of standardized scores, which skier did better?

Kostelić’s z-scores are:

and

The sum of his z-scores is approximately –1.65. Ligety’s z-score sum is only about –1.41. Because the standard deviation
of the downhill times is so much smaller, Kostelić’s better performance there means that he would have won the event if
standardized scores were used.

zDownhill =

100.44 - 101.807
1.8356

= -0.74zSlalom =

89.44 - 94.2714
5.2844

= -0.91

When we standardize data to get a z-score, we do two things. First, we shift
the data by subtracting the mean. Then, we rescale the values by dividing by their
standard deviation. We often shift and rescale data. What happens to a grade dis-
tribution if everyone gets a five-point bonus? Everyone’s grade goes up, but does
the shape change? (Hint: Has anyone’s distance from the mean changed?) If we
switch from feet to meters, what happens to the distribution of heights of students
in your class? Even though your intuition probably tells you the answers to these
questions, we need to look at exactly how shifting and rescaling work.

JUST CHECKING
1. Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and

an 80 on test 2. You’re all set to drop the 80 until she announces that she grades “on a curve.” She standardized the
scores in order to decide which is the lower one. If the mean on the first test was 88 with a standard deviation of 4
and the mean on the second was 75 with a standard deviation of 5,
a) Which one will be dropped?
b) Does this seem “fair”?

Shifting Data
Since the 1960s, the Centers for Disease Control’s National Center for Health
Statistics has been collecting health and nutritional information on people of
all ages and backgrounds. A recent survey, the National Health and Nutrition
Examination Survey (NHANES) 2001–2002,2 measured a wide variety of vari-
ables, including body measurements, cardiovascular fitness, blood chemistry, and
demographic information on more than 11,000 individuals.

2 www.cdc.gov/nchs/nhanes.htm
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108 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

Their mean weight is 82.36 kg. For this age and height group, the National Insti-
tutes of Health recommends a maximum healthy weight of 74 kg, but we can see
that some of the men are heavier than the recommended weight. To compare their
weights to the recommended maximum, we could subtract 74 kg from each of
their weights. What would that do to the center, shape, and spread of the histo-
gram? Here’s the picture: 

Included in this group were 80 men between 19 and 24 years old of average
height (between and tall). Here are a histogram and boxplot of their
weights:

5¿10–5¿8–
WHO 80 male participants

of the NHANES sur-
vey between the ages
of 19 and 24 who
measured between 
68 and 70 inches tall

WHAT Their weights

UNIT Kilograms

WHEN 2001–2002

WHERE United States

WHY To study nutrition, 
and health issues and
trends

HOW National survey

25

20

15
10

5

50 100 150
# 

of
 M

en
Weight (kg)

FIGURE 6.2
Histogram and boxplot for the men’s weights.
The shape is skewed to the right with several
high outliers.
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FIGURE 6.3
Subtracting 74 kilograms shifts the entire 
histogram down but leaves the spread and 
the shape exactly the same.

On average, they weigh 82.36 kg, so on average they’re 8.36 kg overweight. 
And, after subtracting 74 from each weight, the mean of the new distribution is

In fact, when we shift the data by adding (or subtracting) a
constant to each value, all measures of position (center, percentiles, min, max) will
increase (or decrease) by the same constant.

What about the spread? What does adding or subtracting a constant value do
to the spread of the distribution? Look at the two histograms again. Adding or
subtracting a constant changes each data value equally, so the entire distribution
just shifts. Its shape doesn’t change and neither does the spread. None of the
measures of spread we’ve discussed—not the range, not the IQR, not the standard
deviation—changes.

Adding (or subtracting) a constant to every data value adds (or subtracts) the same 
constant to measures of position, but leaves measures of spread unchanged.

Rescaling Data
Not everyone thinks naturally in metric units. Suppose we want to look at the
weights in pounds instead. We’d have to rescale the data. Because there are about
2.2 pounds in every kilogram, we’d convert the weights by multiplying each value
by 2.2. Multiplying or dividing each value by a constant changes the measurement

= 8.36 kg.82.36 - 74

Activity: Changing the
Baseline. What happens when
we shift data? Do measures of
center and spread change?

Doctors’ height and weight
charts sometimes give ideal
weights for various heights
that include 2-inch heels. If
the mean height of adult
women is 66 inches including
2-inch heels, what is the mean
height of women without
shoes? Each woman is shorter
by 2 inches when barefoot, so
the mean is decreased by 
2 inches, to 64 inches.
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Rescaling Data 109

units. Here are histograms of the two weight distributions, plotted on the same
scale, so you can see the effect of multiplying: 
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FIGURE 6.4
Men’s weights in both kilograms and
pounds. How do the distributions and
numerical summaries change?
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FIGURE 6.5
The boxplots (drawn on the same
scale) show the weights measured in
kilograms (on the left) and pounds 
(on the right). Because 1 kg is 2.2 lb,
all the points in the right box are 2.2
times larger than the corresponding
points in the left box. So each meas-
ure of position and spread is 2.2 times
as large when measured in pounds
rather than kilograms.

What happens to the shape of the distribution? Although the histograms
don’t look exactly alike, we see that the shape really hasn’t changed: Both are uni-
modal and skewed to the right.

What happens to the mean? Not too surprisingly, it gets multiplied by 2.2 as
well. The men weigh 82.36 kg on average, which is 181.19 pounds. As the box-
plots and 5-number summaries show, all measures of position act the same way.
They all get multiplied by this same constant.

What happens to the spread? Take a look at the boxplots. The spread in
pounds (on the right) is larger. How much larger? If you guessed 2.2 times, you’ve
figured out how measures of spread get rescaled.

Simulation: Changing the
Units. Change the center and
spread values for a distribution
and watch the summaries change
(or not, as the case may be).

Weight (kg) Weight (lb)

Min 54.3 119.46
Q1 67.3 148.06
Median 76.85 169.07
Q3 92.3 203.06
Max 161.5 355.30

IQR 25 55
SD 22.27 48.99

Rescaling the slalomFOR EXAMPLE

Recap: The times in the men’s combined event at the winter Olympics are reported in minutes and seconds. Previously, we converted these to
seconds and found the mean and standard deviation of the slalom times to be 94.2714 seconds and 5.2844 seconds, respectively.

Question: Suppose instead that we had reported the times in minutes—that is, that each individual time was divided by 60. What would the resulting
mean and standard deviation be?

Dividing all the times by 60 would divide both the mean and the standard deviation by 60:

 SD = 5.2844>60 = 0 .0881 minutes .Mean = 94.2714>60 = 1 .5712 minutes;

When we multiply (or divide) all the data values by any constant, all measures of 
position (such as the mean, median, and percentiles) and measures of spread (such as
the range, the IQR, and the standard deviation) are multiplied (or divided) by that
same constant.
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Back to z-scores
Standardizing data into z-scores is just shifting them by the mean and rescaling
them by the standard deviation. Now we can see how standardizing affects the
distribution. When we subtract the mean of the data from every data value, we
shift the mean to zero. As we have seen, such a shift doesn’t change the standard
deviation.

When we divide each of these shifted values by s, however, the standard devi-
ation should be divided by s as well. Since the standard deviation was s to start
with, the new standard deviation becomes 1.

How, then, does standardizing affect the distribution of a variable? Let’s con-
sider the three aspects of a distribution: the shape, center, and spread.

u Standardizing into z-scores does not change the shape of the distribution of a variable.

u Standardizing into z-scores changes the center by making the mean 0.

u Standardizing into z-scores changes the spread by making the standard deviation 1.

JUST CHECKING
2. In 1995 the Educational Testing Service (ETS) adjusted the scores of SAT tests. Before ETS recentered the SAT

Verbal test, the mean of all test scores was 450.
a) How would adding 50 points to each score affect the mean?
b) The standard deviation was 100 points. What would the standard deviation be after adding 50 points?
c) Suppose we drew boxplots of test takers’ scores a year before and a year after the recentering. How would the

boxplots of the two years differ?

3. A company manufactures wheels for in-line skates. The diameters of the wheels have a mean of 3 inches and 
a standard deviation of 0.1 inches. Because so many of their customers use the metric system, the company
decided to report their production statistics in millimeters They report that the standard
deviation is now 2.54 mm. A corporate executive is worried about this increase in variation. Should he be
concerned? Explain.

(1 inch = 25.4 mm).

Activity: Standardizing.
What if we both shift and rescale?
The result is so nice that we give
it a name.

z-scores have mean 0 and
standard deviation 1.

Many colleges and universities require applicants to submit scores on standardized tests such as
the SAT Writing, Math, and Critical Reading (Verbal) tests. The college your little sister wants to
apply to says that while there is no minimum score required, the middle 50% of their students
have combined SAT scores between 1530 and 1850.You’d feel confident if you knew her score was
in their top 25%, but unfortunately she took the ACT test, an alternative standardized test.

Question: How high does her ACT need to be to make it into the top quarter of equivalent SAT
scores?

To answer that question you’ll have to standardize all the scores, so you’ll need to know the
mean and standard deviations of scores for some group on both tests. The college doesn’t report
the mean or standard deviation for their applicants on either test, so we’ll use the group of all test
takers nationally. For college-bound seniors, the average combined SAT score is about 1500 and
the standard deviation is about 250 points. For the same group, the ACT average is 20.8 with a
standard deviation of 4.8.

Working with Standardized VariablesSTEP-BY-STEP EXAMPLE
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When Is a z-score BIG? 
A z-score gives us an indication of how unusual a value is because it tells us how
far it is from the mean. If the data value sits right at the mean, it’s not very far at all
and its z-score is 0. A z-score of 1 tells us that the data value is 1 standard deviation
above the mean, while a z-score of tells us that the value is 1 standard devia-

tion below the mean. How far from 0 does a z-score have to be to
be interesting or unusual? There is no universal standard, but
the larger the score is (negative or positive), the more unusual it
is. We know that 50% of the data lie between the quartiles. For
symmetric data, the standard deviation is usually a bit smaller
than the IQR, and it’s not uncommon for at least half of the data
to have z-scores between and 1. But no matter what the shape
of the distribution, a z-score of 3 (plus or minus) or more is rare,
and a z-score of 6 or 7 shouts out for attention.

To say more about how big we expect a z-score to be, we
need to model the data’s distribution. A model will let us say
much more precisely how often we’d be likely to see z-scores
of different sizes. Of course, like all models of the real world, the
model will be wrong—wrong in the sense that it can’t match

-1

-1

I want to know what ACT score corresponds to
the upper-quartile SAT score. I know the mean
and standard deviation for both the SAT and
ACT scores based on all test takers, but I have
no individual data values.

Ç Quantitative Data Condition: Scores for
both tests are quantitative but have no
meaningful units other than points.

Plan State what you want to find out.

Variables Identify the variables and 
report the W’s (if known).

The middle 50% of SAT scores at this college
fall between 1530 and 1850 points. To be in the
top quarter, my sister would have to have a
score of at least 1850. That’s a z-score of

So an SAT score of 1850 is 1.40 standard devi-
ations above the mean of all test takers.

For the ACT, 1.40 standard deviations above
the mean is 20.8 + 1.40(4.8) = 27.52.

z =  
(1850 -  1500)

250
 =  1.40

Mechanics Standardize the variables.

Check the appropriate conditions.

The y-value we seek is z standard devia-
tions above the mean.

Conclusion Interpret your results in 
context.

To be in the top quarter of applicants in terms
of combined SAT score, she’d need to have an
ACT score of at least 27.52.

Is Normal Normal?
Don’t be misled.The name “Normal”doesn’t
mean that these are the usual shapes for
histograms.The name follows a tradition of
positive thinking in Mathematics and Statistics in
which functions, equations, and relationships
that are easy to work with or have other nice
properties are called  “normal”, “common”,
“regular”, “natural”, or similar terms. It’s as if by
calling them ordinary, we could make them
actually occur more often and simplify our lives.
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reality exactly. But it can still be useful. Like a physical model, it’s something we
can look at and manipulate in order to learn more about the real world.

Models help our understanding in many ways. Just as a model of an airplane
in a wind tunnel can give insights even though it doesn’t show every rivet,3 models
of data give us summaries that we can learn from and use, even though they don’t
fit each data value exactly. It’s important to remember that they’re only models of re-
ality and not reality itself. But without models, what we can learn about the world
at large is limited to only what we can say about the data we have at hand.

There is no universal standard for z-scores, but there is a model that shows up
over and over in Statistics. You may have heard of “bell-shaped curves.” Statisti-
cians call them Normal models. Normal models are appropriate for distributions
whose shapes are unimodal and roughly symmetric. For these distributions, they
provide a measure of how extreme a z-score is. Fortunately, there is a Normal
model for every possible combination of mean and standard deviation. We write

to represent a Normal model with a mean of and a standard deviation
of Why the Greek? Well, this mean and standard deviation are not numerical
summaries of data. They are part of the model. They don’t come from the data.
Rather, they are numbers that we choose to help specify the model. Such numbers
are called parameters of the model.

We don’t want to confuse the parameters with summaries of the data such as
and s, so we use special symbols. In Statistics, we almost always use Greek let-

ters for parameters. By contrast, summaries of data are called statistics and are
usually written with Latin letters.

If we model data with a Normal model and standardize them using the corre-
sponding and we still call the standardized value a z-score, and we write

Usually it’s easier to standardize data first (using its mean and standard devia-
tion). Then we need only the model N(0,1). The Normal model with mean 0 and
standard deviation 1 is called the standard Normal model (or the standard
Normal distribution).

But be careful. You shouldn’t use a Normal model for just any data set.
Remember that standardizing won’t change the shape of the distribution. If the
distribution is not unimodal and symmetric to begin with, standardizing won’t
make it Normal.

When we use the Normal model, we assume that the distribution of the data
is, well, Normal. Practically speaking, there’s no way to check whether this
Normality Assumption is true. In fact, it almost certainly is not true. Real data
don’t behave like mathematical models. Models are idealized; real data are real.
The good news, however, is that to use a Normal model, it’s sufficient to check the
following condition:

Nearly Normal Condition. The shape of the data’s distribution is unimodal and
symmetric. Check this by making a histogram (or a Normal probability plot, which
we’ll explain later).

Don’t model data with a Normal model without checking whether the condition
is satisfied.

All models make assumptions. Whenever we model—and we’ll do that
often—we’ll be careful to point out the assumptions that we’re making. And,
what’s even more important, we’ll check the associated conditions in the data to
make sure that those assumptions are reasonable.

z =

y - m

s
.

s,m

y

s.
mN1m, s2

NOTATION ALERT:

always denotes a Normal
model.The pronounced
“mew,” is the Greek letter for
“m”and always represents the
mean in a model.The sigma,
is the lowercase Greek letter for
“s”and always represents the
standard deviation in a model.

s,

m,
N1m, s2

Is the Standard Normal 
a standard?
Yes. We call it the “Standard
Normal” because it models
standardized values. It is also
a “standard” because this is
the particular Normal model
that we almost always use.

3 In fact, the model is useful because it doesn’t have every rivet. It is because models offer a
simpler view of reality that they are so useful as we try to understand reality.

Activity: Working with
Normal Models. Learn more
about the Normal model and see
what data drawn at random from
a Normal model might look like.

“All models are wrong—but
some are useful.”

—George Box, famous
statistician
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The 68–95–99.7 Rule
Normal models give us an idea of how extreme a value is by telling us how likely
it is to find one that far from the mean. We’ll soon show how to find these num-
bers precisely—but one simple rule is usually all we need.

It turns out that in a Normal model, about 68% of the values fall within 1 stan-
dard deviation of the mean, about 95% of the values fall within 2 standard deviations
of the mean, and about 99.7%—almost all—of the values fall within 3 standard
deviations of the mean. These facts are summarized in a rule that we call (let’s 
see . . .) the 68–95–99.7 Rule.4

One in a Million
These magic 68, 95, 99.7
values come from the
Normal model. As a model,
it can give us corresponding
values for any z-score. For
example, it tells us that fewer
than 1 out of a million values
have z-scores smaller than 

or larger than So
if someone tells you you’re
“one in a million,” they must
really admire your z-score.

+5.0.-5.0

–3s –2s –1s 1s 2s 3s0

68%

95%

99.7%

FIGURE 6.6
Reaching out one, two, and
three standard deviations on
a Normal model gives the

Rule, seen
as proportions of the area
under the curve.

68-95-99.7

Using the 68–95–99.7 RuleFOR EXAMPLE

Question: In the 2006 Winter Olympics men’s combined event, Jean-Baptiste Grange of France skied the slalom in 88.46 seconds—about 1 standard
deviation faster than the mean. If a Normal model is useful in describing slalom times, about how many of the 35 skiers finishing the event would you
expect skied the slalom faster than Jean-Baptiste?

From the 68–95–99.7 Rule, we expect 68% of the skiers to be within one standard deviation of the mean. Of the
remaining 32%, we expect half on the high end and half on the low end. 16% of 35 is 5.6, so, conservatively, we’d expect
about 5 skiers to do better than Jean-Baptiste.

4 This rule is also called the “Empirical Rule” because it originally came from observation.
The rule was first published by Abraham de Moivre in 1733, 75 years before the Normal
model was discovered. Maybe it should be called “de Moivre’s Rule,” but that wouldn’t
help us remember the important numbers, 68, 95, and 99.7.

JUST CHECKING
4. As a group, the Dutch are among the tallest people in the world. The average Dutch man is 184 cm tall—just over

6 feet (and the average Dutch woman is 170.8 cm tall—just over ). If a Normal model is appropriate and the
standard deviation for men is about 8 cm, what percentage of all Dutch men will be over 2 meters ( ) tall?

5. Suppose it takes you 20 minutes, on average, to drive to school, with a standard deviation of 2 minutes. Suppose a
Normal model is appropriate for the distributions of driving times.

6¿6–

5¿7–

a) How often will you arrive at school in less than
22 minutes?

b) How often will it take you more than 24 min-
utes?

c) Do you think the distribution of your driving
times is unimodal and symmetric?

d) What does this say about the accuracy of your
predictions? Explain.

The 68–95–99.7 Rule. See it
work for yourself.
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The First Three Rules for Working with 
Normal Models

1. Make a picture.
2. Make a picture.
3. Make a picture.

Although we’re thinking about models, not histograms of data, the three
rules don’t change. To help you think clearly, a simple hand-drawn sketch is all
you need. Even experienced statisticians sketch pictures to help them think about
Normal models. You should too.

Of course, when we have data, we’ll also need to make a histogram to check the
Nearly Normal Condition to be sure we can use the Normal model to model the
data’s distribution. Other times, we may be told that a Normal model is appropri-
ate based on prior knowledge of the situation or on theoretical considerations.

Activity: Normal Models.
Normal models have several
interesting properties—see them
here.

How to Sketch a Normal Curve That Looks Normal To sketch a good
Normal curve, you need to remember only three things:

u The Normal curve is bell-shaped and symmetric around its mean. Start at the
middle, and sketch to the right and left from there.

u Even though the Normal model extends forever on either side, you need to draw
it only for 3 standard deviations. After that, there’s so little left that it isn’t worth
sketching.

u The place where the bell shape changes from curving downward to curving back
up—the inflection point—is exactly one standard deviation away from the mean.

Inflection point

–3� –2� –1� 1� 2� 3�0

The SAT Reasoning Test has three parts: Writing, Math, and Critical Reading (Verbal). Each part
has a distribution that is roughly unimodal and symmetric and is designed to have an overall
mean of about 500 and a standard deviation of 100 for all test takers. In any one year, the mean
and standard deviation may differ from these target values by a small amount, but they are a good
overall approximation.

Question: Suppose you earned a 600 on one part of your SAT. Where do you stand among all 
students who took that test?

You could calculate your z-score and find out that it’s but what
does that tell you about your percentile? You’ll need the Normal model and the Rule
to answer that question.

68-95-99.7
z = 1600 - 5002>100 = 1.0,

Working with the 68–95–99.7 RuleSTEP-BY-STEP EXAMPLE

Activity: Working with
Normal Models. Well, actually
playing with them. This interactive
tool lets you do what this chapter’s
figures can’t do, move them!
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The bounds of SAT scoring at 200 and 800 can also be explained by the
Rule. Since 200 and 800 are three standard deviations from 500, it

hardly pays to extend the scoring any farther on either side. We’d get more infor-
mation only on of students.100 - 99.7 = 0.3%

68-95-99.7

I want to see how my SAT score compares with
the scores of all other students. To do that, I’ll
need to model the distribution.

Let SAT score. Scores are quantitative
but have no meaningful units other than points.

Ç Nearly Normal Condition: If I had data, 
I would check the histogram. I have no
data, but I am told that the SAT scores
are roughly unimodal and symmetric.

I will model SAT score with a N(500, 100) model.

y = my

Plan State what you want to know.

Variables Identify the variable and 
report the W’s.

Be sure to check the appropriate 
conditions.

Specify the parameters of your model.

Mechanics Make a picture of this 
Normal model. (A simple sketch is all 
you need.)

Locate your score.

200 300 400 500 600 700 800

68%

95%

99.7%

My score of 600 is 1 standard deviation above
the mean. That corresponds to one of the
points of the Rule.68-95-99.7

About 68% of those who took the test had
scores that fell no more than 1 standard devia-
tion from the mean, so of
all students had scores more than 1 standard
deviation away. Only half of those were on the
high side, so about 16% (half of 32%) of the
test scores were better than mine. My score of
600 is higher than about 84% of all scores on
this test.

100% - 68% = 32%

Conclusion Interpret your result in 
context.

The Worst-Case Scenario* Suppose we encounter an observation that’s 5
standard deviations above the mean. Should we be surprised? We’ve just seen that
when a Normal model is appropriate, such a value is exceptionally rare. After all,
99.7% of all the values should be within 3 standard deviations of the mean, so any-
thing farther away would be unusual indeed.

But our handy Rule applies only to Normal models, and the Nor-
mal is such a nice shape. What if we’re dealing with a distribution that’s strongly

68-95-99.7
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Finding Normal Percentiles
An SAT score of 600 is easy to assess, because we can think of it as one standard de-
viation above the mean. If your score was 680, though, where do you stand among
the rest of the people tested? Your z-score is 1.80, so you’re somewhere between 1
and 2 standard deviations above the mean. We figured out that no more than 16%
of people score better than 600. By the same logic, no more than 2.5% of people
score better than 700. Can we be more specific than “between 16% and 2.5%”?

When the value doesn’t fall exactly 1, 2, or 3 standard deviations from the
mean, we can look it up in a table of Normal percentiles or use technology.6

Either way, we first convert our data to z-scores before using the table. Your SAT
score of 680 has a z-score of 1680 - 5002>100 = 1.80.

skewed (like the CEO salaries), or one that is uniform or bimodal or something re-
ally strange? A Normal model has 68% of its observations within one standard de-
viation of the mean, but a bimodal distribution could even be entirely empty in the
middle. In that case could we still say anything at all about an observation 5 stan-
dard deviations above the mean?

Remarkably, even with really weird distributions, the worst case can’t get all that
bad. A Russian mathematician named Pafnuty Tchebycheff5 answered the question
by proving this theorem:

In any distribution, at least of the values must lie within standard 

deviations of the mean.

What does that mean?

u For if the distribution is far from Normal, it’s possible 

that none of the values are within 1 standard deviation of the mean. We
should be really cautious about saying anything about 68% unless we think a
Normal model is justified. (Tchebycheff’s theorem really is about the worst
case; it tells us nothing about the middle; only about the extremes.)

u For no matter how strange the shape of the distribution, 

at least 75% of the values must be within 2 standard deviations of the mean.
Normal models may expect 95% in that 2-standard-deviation interval, but
even in a worst-case scenario it can never go lower than 75%.

u For in any distribution, at least 89% of the values lie

within 3 standard deviations of the mean.

What we see is that values beyond 3 standard deviations from the mean are un-
common, Normal model or not. Tchebycheff tells us that at least 96% of all values
must be within 5 standard deviations of the mean. While we can’t always apply the

Rule, we can be sure that the observation we encountered 5 stan-
dard deviations above the mean is unusual.
68-95-99.7

1 -

1

32
=

8
9

;k = 3,

1 -

1

22
=

3
4

;k = 2,

1 -

1

12
= 0;k = 1,

; k1 -

1

k2

5 He may have made the worst case for deviations clear, but the English spelling of his
name is not. You’ll find his first name spelled Pavnutii or Pavnuty and his last name
spelled Chebsheff, Cebysev, and other creative versions.
6

puter package) does this, too—and more easily!

Activity: Your Pulse z-
Score. Is your pulse rate high or
low? Find its z-score with the
Normal Model Tool.

Activity: The Normal
Table. Table Z just sits there, but
this version of the Normal table
changes so it always Makes a
Picture that fits.
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In the piece of the table shown, we find your z-score by looking down the left col-
umn for the first two digits, 1.8, and across the top row for the third digit, 0. The
table gives the percentile as 0.9641. That means that 96.4% of the z-scores are less
than 1.80. Only 3.6% of people, then, scored better than 680 on the SAT.

Most of the time, though, you’ll do this with your calculator. 

1.80

–3s –2s –1s 1s 2s 3s0

z .00 .01

1.7  .9554  .9564

1.8  .9641  .9649

1.9  .9713  .9719

FIGURE 6.7
A table of Normal percentiles (Table Z

centage of individuals in a Standard
Normal distribution falling below any
specified z-score value.

TI Tips Finding Normal percentages

Your calculator knows the Normal model. Have a look under 2nd DISTR.
There you will see three “norm” functions, normalpdf(, normalcdf(,
and invNorm(. Let’s play with the first two.

• normalpdf( calculates y-values for graphing a Normal curve. You proba-
bly won’t use this very often, if at all. If you want to try it, graph
Y1=normalpdf(X) in a graphing WINDOW with Xmin=–4, Xmax=4,
Ymin=–0.1, and Ymax=0.5.

• normalcdf( finds the proportion of area under the curve between two 
z-score cut points, by specifying normalcdf(zLeft,zRight). Do
make friends with this function; you will use it often!

Example 1
The Normal model shown shades the region between and

To find the shaded area:
Under 2nd DISTR select normalcdf(; hit ENTER.
Specify the cut points: normalcdf(–.5,1.0) and hit ENTER again.

There’s the area. Approximately 53% of a Normal model lies between half a
standard deviation below and one standard deviation above the mean.

Example 2
In the example in the text we used Table Z to determine the fraction of SAT
scores above your score of 680. Now let’s do it again, this time using your TI.

First we need z-scores for the cut points:

• Since 680 is 1.8 standard deviations above the mean, your z-score is 1.8;
that’s the left cut point.

–3s –2s –1s 1s 2s 3s0

–0.5

0.533

1.0

z = 1.0.z = -0.5

Normal percentiles. Explore the
relationship between z-scores and
areas in a Normal model.
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• Theoretically the standard Normal model extends rightward forever, but
you can’t tell the calculator to use infinity as the right cut point. Recall that
for a Normal model almost all the area lies within standard deviations of
the mean, so any upper cut point beyond, say, does not cut off any-
thing very important. We suggest you always use 99 (or ) when you re-
ally want infinity as your cut point—it’s easy to remember and way beyond
any meaningful area.

Now you’re ready. Use the command normalcdf(1.8,99).

There you are! The Normal model estimates that approximately 3.6% of SAT
scores are higher than 680.

-99
z = 5

;3

Standardizing the two scores, I find that

and

z =

1450 - 5002
100

= -0.50

z =

1y - m2

s
=

1600 - 5002
100

= 1.00

Mechanics Make a picture of this Nor-
mal model. Locate the desired values and
shade the region of interest.

The Normal model is our first model for data. It’s the first in a series of modeling situations where
we step away from the data at hand to make more general statements about the world. We’ll be-
come more practiced in thinking about and learning the details of models as we progress through
the book. To give you some practice in thinking about the Normal model, here are several prob-
lems that ask you to find percentiles in detail.

Question: What proportion of SAT scores fall between 450 and 600?

Working with Normal Models Part ISTEP-BY-STEP EXAMPLE

I want to know the proportion of SAT scores
between 450 and 600.

Let y = SAT score.

Ç Nearly Normal Condition: We are told that
SAT scores are nearly Normal.

I’ll model SAT scores with a N(500, 100) model,
using the mean and standard deviation speci-
fied for them.

Plan State the problem.

Variables Name the variable.

Check the appropriate conditions and
specify which Normal model to use.

450 600

0.533

200 300 400 500 600 700 800

Find z-scores for the cut points 450 and
600. Use technology to find the desired
proportions, represented by the area un-
der the curve. (This was Example 1 in the 
TI Tips—take another look.)
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So, 

 = 0.5328
 Area 1450 6 y 6 6002 = Area 1-0.5 6 z 6 1.02

(OR: From Table Z, the area 
and area so the 
proportion of z-scores between them is

or 53.28%.)0.8413 - 0.3085 = 0.5328,

1z 6 -0.52 = 0.3085,
1z 6 1.02 = 0.8413(If you use a table, then you need to sub-

tract the two areas to find the area between
the cut points.)

The Normal model estimates that about 53.3%
of SAT scores fall between 450 and 600.

Conclusion Interpret your result in 
context.

From Percentiles to Scores: z in Reverse
Finding areas from z-scores is the simplest way to work with the Normal model.
But sometimes we start with areas and are asked to work backward to find the
corresponding z-score or even the original data value. For instance, what z-score
cuts off the top 10% in a Normal model?

Make a picture like the one shown, shading the rightmost 10% of the area.
Notice that this is the 90th percentile. Look in Table Z for an area of 0.900. The ex-
act area is not there, but 0.8997 is pretty close. That shows up in the table with 1.2
in the left margin and .08 in the top margin. The z-score for the 90th percentile,
then, is approximately .

Computers and calculators will determine the cut point more precisely (and
more easily).

z = 1.28

10%

–3 –2 –1 1 2 30

90%

TI Tips Finding Normal cutpoints

To find the z-score at the 25th percentile, go to 2nd DISTR again. This time
we’ll use the third of the “norm” functions, invNorm(.

Just specify the desired percentile with the command invNorm(.25) and
hit ENTER. The calculator says that the cut point for the leftmost 25% of a
Normal model is approximately 

One more example: What z-score cuts off the highest 10% of a Normal model?
That’s easily done—just remember to specify the percentile. Since we want the
cut point for the highest 10%, we know that the other 90% must be below that 
z-score. The cut point, then, must stand at the 90th percentile, so specify 
invNorm(.90).

Only 10% of the area in a Normal model is more than about 1.28 standard de-
viations above the mean.

z = -0.674.

z .08 .09

1.2  .8997  .9015
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Question: Suppose a college says it admits only people with SAT Verbal test scores among the top
10%. How high a score does it take to be eligible?

Working with Normal Models Part IISTEP-BY-STEP EXAMPLE

How high an SAT Verbal score do I need to be in
the top 10% of all test takers?

Let y = my SAT score.

Ç Nearly Normal Condition: I am told that
SAT scores are nearly Normal. I’ll model
them with N(500, 100).

Plan State the problem.

The cut point is z = 1.28.

Mechanics Make a picture of this Nor-
mal model. Locate the desired percentile
approximately by shading the rightmost
10% of the area.

Variable Define the variable.

Check to see if a Normal model is appro-
priate, and specify which Normal model
to use.

A z-score of 1.28 is 1.28 standard deviations
above the mean. Since the SD is 100, that’s
128 SAT points. The cutoff is 128 points above
the mean of 500, or 628.

The college takes the top 10%, so its cutoff
score is the 90th percentile. Find the cor-
responding z-score using your calculator
as shown in the TI Tips. (OR: Use Table Z
as shown on p. 119.)

Convert the z-score back to the original
units.

200 300 400 500 600 700 800

90%

10%

Because the school wants SAT Verbal scores in
the top 10%, the cutoff is 628. (Actually, since
SAT scores are reported only in multiples of 10,
I’d have to score at least a 630.) 

Conclusion Interpret your results in the
proper context.

Normal models. Watch the Normal
model react as you change the
mean and standard deviation.
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Working with Normal percentiles can be a little tricky, depending on how the problem is stated.
Here are a few more worked examples of the kind you’re likely to see.

A cereal manufacturer has a machine that fills the boxes. Boxes are labeled “16 ounces,”so the
company wants to have that much cereal in each box, but since no packaging process is per-
fect, there will be minor variations. If the machine is set at exactly 16 ounces and the Normal
model applies (or at least the distribution is roughly symmetric), then about half of the boxes
will be underweight, making consumers unhappy and exposing the company to bad publicity
and possible lawsuits. To prevent underweight boxes, the manufacturer has to set the mean a
little higher than 16.0 ounces.

Based on their experience with the packaging machine, the company believes that the
amount of cereal in the boxes fits a Normal model with a standard deviation of 0.2 ounces.
The manufacturer decides to set the machine to put an average of 16.3 ounces in each box.
Let’s use that model to answer a series of questions about these cereal boxes.

Question 1: What fraction of the boxes will be underweight?

More Working with Normal ModelsSTEP-BY-STEP EXAMPLE

What proportion of boxes weigh less than
16 ounces?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: I have no data,
so I cannot make a histogram, but I am
told that the company believes the distri-
bution of weights from the machine is
Normal.

I’ll use a N(16.3, 0.2) model.

Plan State the problem.

Variable Name the variable.

Check to see if a Normal model is 
appropriate.

I want to know what fraction of the boxes will
weigh less than 16 ounces.

Mechanics Make a picture of this Nor-
mal model. Locate the value you’re
interested in on the picture, label it, and
shade the appropriate region.

Specify which Normal model to use.

z =

y - m

s
=

16 - 16.3
0.2

= - 1.50Convert your cutoff value into a z-score.

Area (y 6 16) = Area(z 6 - 1.50) = 0.0668Find the area with your calculator (or use
the Normal table).

15.7 15.9 16.116.0 16.3 16.5 16.7 16.9
Estimate from the picture the per-
centage of boxes that are underweight.
(This will be useful later to check that
your answer makes sense.) It looks like
a low percentage. Less than 20% for
sure.

REALITY CHECK 
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I estimate that approximately 6.7% of the
boxes will contain less than 16 ounces of cereal.

Conclusion State your conclusion, and
check that it’s consistent with your earlier
guess. It’s below 20%—seems okay.

Question 2: The company’s lawyers say that 6.7% is too high.They insist that no more than 4% 
of the boxes can be underweight. So the company needs to set the machine to put a little more
cereal in each box. What mean setting do they need?

What mean weight will reduce the proportion of
underweight boxes to 4%?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: I am told that a
Normal model applies.

I don’t know , the mean amount of cereal. 
The standard deviation for this machine is 
0.2 ounces. The model is 

No more than 4% of the boxes can be below 
16 ounces.

N(m, 0.2).

m

Plan State the problem.

Variable Name the variable.

Check to see if a Normal model is
appropriate.

The z-score that has 0.04 area to the left of it
is 

For 16 to be 1.75 standard deviations below the
mean, the mean must be

ounces.16 +  1.75 (0.2) = 16.35

z = - 1.75.

Mechanics Make a picture of this Nor-
mal model. Center it at (since you don’t
know the mean), and shade the region be-
low 16 ounces.

m

Specify which Normal model to use. 
This time you are not given a value for
the mean!

We found out earlier that setting the ma-
chine to ounces made 6.7% of
the boxes too light. We’ll need to raise the
mean a bit to reduce this fraction.

m = 16.3
REALITY CHECK

Using your calculator (or the Normal
table), find the z-score that cuts off the
lowest 4%.

Use this information to find It’s located
1.75 standard deviations to the right of 16.
Since is 0.2, that’s or 0.35
ounces more than 16.

1.75 * 0.2,s

m.

16 m

The company must set the machine to average
16.35 ounces of cereal per box.

Conclusion Interpret your result in 
context.
(This makes sense; we knew it would
have to be just a bit higher than 16.3.)
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Question 3: The company president vetoes that plan, saying the company should give away less
free cereal, not more. Her goal is to set the machine no higher than 16.2 ounces and still have only
4% underweight boxes.The only way to accomplish this is to reduce the standard deviation. What
standard deviation must the company achieve, and what does that mean about the machine?

What standard deviation will allow the mean to
be 16.2 ounces and still have only 4% of boxes
underweight?

Let y = weight of cereal in a box.

Ç Nearly Normal Condition: The company be-
lieves that the weights are described by a
Normal model.

I know the mean, but not the standard devia-
tion, so my model is .N(16.2, s)

Plan State the problem.

Variable Name the variable.

Check conditions to be sure that a Nor-
mal model is appropriate.

I know that the z-score with 4% below it is

 s = 0.114
 1.75 s = 0.2

 - 1.75 =

16 - 16.2
s

 z =

y - m

s

z = - 1.75.

Mechanics Make a picture of this Nor-
mal model. Center it at 16.2, and shade
the area you’re interested in. We want 4%
of the area to the left of 16 ounces.

Specify which Normal model to use. This
time you don’t know 

We know the new standard deviation
must be less than 0.2 ounces.

s.

REALITY CHECK

Find the z-score that cuts off the lowest 4%.

Solve for . (We need 16 to be ’s be-
low 16.2, so must be 0.2 ounces.
You could just start with that equation.)

1.75 s
1.75 ss

16 16.2

The company must get the machine to box ce-
real with a standard deviation of only 0.114
ounces. This means the machine must be more
consistent (by nearly a factor of 2) in filling the
boxes.

Conclusion Interpret your result in 
context.

As we expected, the standard deviation is
lower than before—actually, quite a bit
lower.
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Are You Normal? Find Out with a Normal
Probability Plot

In the examples we’ve worked through, we’ve assumed that the underlying data
distribution was roughly unimodal and symmetric, so that using a Normal model
makes sense. When you have data, you must check to see whether a Normal
model is reasonable. How? Make a picture, of course! Drawing a histogram of the
data and looking at the shape is one good way to see if a Normal model might
work.

There’s a more specialized graphical display that can help you to decide
whether the Normal model is appropriate: the Normal probability plot. If the
distribution of the data is roughly Normal, the plot is roughly a diagonal straight
line. Deviations from a straight line indicate that the distribution is not Normal.
This plot is usually able to show deviations from Normality more clearly than the
corresponding histogram, but it’s usually easier to understand how a distribution
fails to be Normal by looking at its histogram.

Some data on a car’s fuel efficiency provide an example of data that are nearly
Normal. The overall pattern of the Normal probability plot is straight. The two
trailing low values correspond to the values in the histogram that trail off the low
end. They’re not quite in line with the rest of the data set. The Normal probability
plot shows us that they’re a bit lower than we’d expect of the lowest two values
in a Normal model. 

–1.25 0.00 1.25 2.50
Normal Scores

29

24

19

14

m
pg

FIGURE 6.9
Histogram and Normal probability plot
for gas mileage (mpg) recorded by one
of the authors over the 8 years he
owned a 1989 Nissan Maxima. The
vertical axes are the same, so each dot
on the probability plot would fall into
the bar on the histogram immediately
to its left.

By contrast, the Normal probability plot of the men’s Weights from the
NHANES Study is far from straight. The weights are skewed to the high end, and
the plot is curved. We’d conclude from these pictures that approximations using
the 68–95–99.7 Rule for these data would not be very accurate. 
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Normal Scores

300
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FIGURE 6.10
Histogram and Normal probability plot
for men’s weights. Note how a skewed
distribution corresponds to a bent
probability plot.

Normal probability plots and
histograms. See how a normal
probability plot responds as you
change the shape of a distribution.
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How Does a Normal Probability Plot Work?
Why does the Normal probability plot work like that? We looked at 100 fuel
efficiency measures for the author ’s Nissan car. The smallest of these has a 
z-score of The Normal model can tell us what value to expect for the
smallest z-score in a batch of 100 if a Normal model were appropriate. That
turns out to be So our first data value is smaller than we would expect
from the Normal.

We can continue this and ask a similar question for each value. For example,
the 14th-smallest fuel efficiency has a z-score of almost exactly , and that’s just
what we should expect (well, to be exact). A Normal probability plot takes
each data value and plots it against the z-score you’d expect that point to have if
the distribution were perfectly Normal.7

When the values match up well, the line is straight. If one or two points are
surprising from the Normal’s point of view, they don’t line up. When the entire
distribution is skewed or different from the Normal in some other way, the values
don’t match up very well at all and the plot bends.

It turns out to be tricky to find the values we expect. They’re called Normal
scores, but you can’t easily look them up in the tables. That’s why probability plots
are best made with technology and not by hand.

The best advice on using Normal probability plots is to see whether they are
straight. If so, then your data look like data from a Normal model. If not, make a
histogram to understand how they differ from the model.

-1.1
-1

-2.58.

-3.16.

TI Tips Creating a Normal probability plot

Let’s make a Normal probability plot with the calculator. Here are the boys’
agility test scores we looked at in Chapter 5; enter them in L1:

22, 17, 18, 29, 22, 23, 24, 23, 17, 21

Now you can create the plot:

• Turn a STATPLOT On.
• Tell it to make a Normal probability plot by choosing the last of the icons.
• Specify your datalist and which axis you want the data on. (We’ll use Y so

the plot looks like the others we showed you.)
• Specify the Mark you want the plot to use.
• Now ZoomStat does the rest.

The plot doesn’t look very straight. Normality is certainly questionable here.

(Not that it matters in making this decision, but that vertical line is the y-axis.
Points to the left have negative z-scores and points to the right have positive
z-scores.)

7 Sometimes the Normal probability plot switches the two axes, putting the data on the 
x-axis and the z-scores on the y-axis.
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Activity: Assessing
Normality. This activity guides
you through the process of
checking the Nearly Normal
condition using your statistics
package.
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WHAT CAN GO WRONG?
u Don’t use a Normal model when the distribution is not unimodal and symmetric. Normal mod-

els are so easy and useful that it is tempting to use them even when they don’t de-
scribe the data very well. That can lead to wrong conclusions. Don’t use a Normal
model without first checking the Nearly Normal Condition. Look at a picture of the
data to check that it is unimodal and symmetric. A histogram, or a Normal probabil-
ity plot, can help you tell whether a Normal model is appropriate.

The CEOs (p. 90) had a mean total compensation of $10,307,311.87 with a stan-
dard deviation of $17,964,615.16. Using the Normal model rule, we should expect
about 68% of the CEOs to have compensations between and
$28,271,927.03. In fact, more than 90% of the CEOs have annual compensations in
this range. What went wrong? The distribution is skewed, not symmetric. Using the
68–95–99.7 Rule for data like these will lead to silly results.

u Don’t use the mean and standard deviation when outliers are present. Both means and stan-
dard deviations can be distorted by outliers, and no model based on distorted val-
ues will do a good job. A z-score calculated from a distribution with outliers may be
misleading. It’s always a good idea to check for outliers. How? Make a picture.

u Don’t round your results in the middle of a calculation. We reported the mean of the hep-
tathletes’ long jump as 6.16 meters. More precisely, it was 6.16153846153846
meters.

You should use all the precision available in the data for all the intermediate
steps of a calculation. Using the more precise value for the mean (and also carrying
15 digits for the SD), the z-score calculation for Klüft’s long jump comes out to

We’d report that as 2.692, as opposed to the rounded-off value of 2.70 we got earlier
from the table.

u Don’t worry about minor differences in results. Because various calculators and pro-
grams may carry different precision in calculations, your answers may differ slightly
from those we show in the text and in the Step-By-Steps, or even from the values
given in the answers in the back of the book. Those differences aren’t anything to
worry about. They’re not the main story Statistics tries to tell.

z =

6.78 - 6.16153846153846
0.2297597407326585

= 2.691775053755667700

-$7,657,303.29
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CONNECTIONS
Changing the center and spread of a variable is equivalent to changing its units. Indeed, the only
part of the data’s context changed by standardizing is the units. All other aspects of the context do
not depend on the choice or modification of measurement units. This fact points out an important
distinction between the numbers the data provide for calculation and the meaning of the variables
and the relationships among them. Standardizing can make the numbers easier to work with, but it
does not alter the meaning.

Another way to look at this is to note that standardizing may change the center and spread val-
ues, but it does not affect the shape of a distribution. A histogram or boxplot of standardized values
looks just the same as the histogram or boxplot of the original values except, perhaps, for the num-
bers on the axes.

When we summarized shape, center, and spread for histograms, we compared them to unimodal,
symmetric shapes. You couldn’t ask for a nicer example than the Normal model. And if the shape is
like a Normal, we’ll use the the mean and standard deviation to standardize the values.

WHAT HAVE WE LEARNED?

We’ve learned that the story data can tell may be easier to understand after shifting or rescaling
the data.

u Shifting data by adding or subtracting the same amount from each value affects measures of
center and position but not measures of spread.

u Rescaling data by multiplying or dividing every value by a constant, changes all the summary
statistics—center, position, and spread.

We’ve learned the power of standardizing data.

u Standardizing uses the standard deviation as a ruler to measure distance from the mean, creat-
ing z-scores.

u Using these z-scores, we can compare apples and oranges—values from different distributions
or values based on different units.

u And a z-score can identify unusual or surprising values among data.

We’ve learned that the 68–95–99.7 Rule can be a useful rule of thumb for understanding
distributions.

u For data that are unimodal and symmetric, about 68% fall within 1 SD of the mean, 95% fall
within 2 SDs of the mean, and 99.7% fall within 3 SDs of the mean (see p. 130).

Again we’ve seen the importance of Thinking about whether a method will work.

u Normality Assumption: We sometimes work with Normal tables (Table Z). Those tables are
based on the Normal model.

u Data can’t be exactly Normal, so we check the Nearly Normal Condition by making a histogram
(is it unimodal, symmetric, and free of outliers?) or a Normal probability plot (is it straight

Terms
Standardizing 105. We standardize to eliminate units. Standardized values can be compared and combined even

if the original variables had different units and magnitudes.

Standardized value 105. A value found by subtracting the mean and dividing by the standard deviation.
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128 CHAPTER 6    The Standard Deviation as a Ruler and the Normal Model

Shifting 107. Adding a constant to each data value adds the same constant to the mean, the median, and
the quartiles, but does not change the standard deviation or IQR.

Rescaling 108. Multiplying each data value by a constant multiplies both the measures of position (mean,
median, and quartiles) and the measures of spread (standard deviation and IQR) by that constant.

Normal model 112. A useful family of models for unimodal, symmetric distributions.

Parameter 112. A numerically valued attribute of a model. For example, the values of and in a 
model are parameters.

Statistic 112. A value calculated from data to summarize aspects of the data. For example, the mean, and
standard deviation, , are statistics.

z-score 105. A z-score tells how many standard deviations a value is from the mean; z-scores have a mean
of 0 and a standard deviation of 1. When working with data, use the statistics and s:

112. When working with models, use the parameters and :

Standard Normal model 112. A Normal model, with mean and standard deviation . Also called the
standard Normal distribution.

Nearly Normal Condition 112. A distribution is nearly Normal if it is unimodal and symmetric. We can check by looking at a
histogram or a Normal probability plot.

68–95–99.7 Rule 113. In a Normal model, about 68% of values fall within 1 standard deviation of the mean, about
95% fall within 2 standard deviations of the mean, and about 99.7% fall within 3 standard devia-
tions of the mean.

Normal percentile 116. The Normal percentile corresponding to a z-score gives the percentage of values in a standard
Normal distribution found at that z-score or below.

Normal probability plot 124. A display to help assess whether a distribution of data is approximately Normal. If the plot is
nearly straight, the data satisfy the Nearly Normal Condition.

Skills
u Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes

the center and/or spread of a variable.

u Recognize when standardization can be used to compare values.

u Understand that standardizing uses the standard deviation as a ruler.

u Recognize when a Normal model is appropriate.

u Know how to calculate the z-score of an observation.

u Know how to compare values of two different variables using their z-scores.

u Be able to use Normal models and the 68–95–99.7 Rule to estimate the percentage of observa-
tions falling within 1, 2, or 3 standard deviations of the mean.

u Know how to find the percentage of observations falling below any value in a Normal model us-
ing a Normal table or appropriate technology.

u Know how to check whether a variable satisfies the Nearly Normal Condition by making a Nor-
mal probability plot or a histogram.

u Know what z-scores mean.

u Be able to explain how extraordinary a standardized value may be by using a Normal model.
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